Understanding the K-Nearest Neighbors Algorithm (A Beginner's Guide) Machine learning algorithms can seem complex, but breaking them down into simpler terms can make them more approachable. One such algorithm is the K-Nearest Neighbors (K-NN) algorithm, which is popular for its simplicity and effectiveness. In this blog, we'll explore what K-NN is, how it works, and some practical applications. What is K-Nearest Neighbors? K-Nearest Neighbors (K-NN) is a supervised learning algorithm used for classification and regression tasks. In simple terms, K-NN classifies data points based on the 'votes' of their nearest neighbors. It doesn't make any assumptions about the underlying data distribution, making it a non-parametric algorithm. How Does K-NN Work? The K-Nearest Neighbors algorithm operates based on the idea that data points that are close to each other tend to have similar properties or belong to the same class. Here’s a detailed step-by-step process of how K-NN wo...